2016年7月15日 星期五

ggininder

modify from http://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/

solve the memory leak problem

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include<iostream>
using namespace std;
// A structure to represent a node in adjacency list
struct AdjListNode
{
 int dest;
 int weight;
 struct AdjListNode* next;
};
// A structure to represent an adjacency liat
struct AdjList
{
 struct AdjListNode *head;  // pointer to head node of list
};
// A structure to represent a graph. A graph is an array of adjacency lists.
// Size of array will be V (number of vertices in graph)
struct Graph
{
 int V;
 struct AdjList* array;
};
// A utility function to create a new adjacency list node
struct AdjListNode* newAdjListNode(int dest, int weight)
{
 struct AdjListNode* newNode =
  (struct AdjListNode*) malloc(sizeof(struct AdjListNode));
 newNode->dest = dest;
 newNode->weight = weight;
 newNode->next = NULL;
 return newNode;
}
// A utility function that creates a graph of V vertices
struct Graph* createGraph(int V)
{
 struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));
 graph->V = V;
 // Create an array of adjacency lists.  Size of array will be V
 graph->array = (struct AdjList*) malloc(V * sizeof(struct AdjList));
 // Initialize each adjacency list as empty by making head as NULL
 for (int i = 0; i < V; ++i)
  graph->array[i].head = NULL;
 return graph;
}
void delete_graph(Graph* old_graph)
{
 //  struct AdjListNode* ptr;
 for(int i=0;i<old_graph->V;i++)
 {
  free(old_graph->array[i].head);
 }
 free (old_graph->array);
 free(old_graph);

}
// Adds an edge to an undirected graph
void addEdge(struct Graph* graph, int src, int dest, int weight)
{
 // Add an edge from src to dest.  A new node is added to the adjacency
 // list of src.  The node is added at the begining
 struct AdjListNode* newNode = newAdjListNode(dest, weight);
 newNode->next = graph->array[src].head;
 graph->array[src].head = newNode;
 // Since graph is undirected, add an edge from dest to src also
 newNode = newAdjListNode(src, weight);
 newNode->next = graph->array[dest].head;
 graph->array[dest].head = newNode;
}
void delete_all_Edge(struct Graph* graph)
{
 for(int i=0;i<graph->V;i++)
 {
  if(graph->array[i].head==NULL)
  {
  }
  while (graph->array[i].head!=NULL)
  {
   struct AdjListNode* ptr;
   ptr=graph->array[i].head;
   ptr->dest=graph->array[i].head->dest;
   graph->array[i].head=graph->array[i].head->next;

   free(ptr);
  }
 }
}
void see_all_Edge(struct Graph* graph)
{
 //to see if there is any edge between node, just for debugging
 struct AdjListNode* ptr;
 for(int i=0;i<graph->V;i++)
 {
  if(graph->array[i].head==NULL)
  {
   cout<<i<<": nothing here!"<<endl;
  }
  if(graph->array[i].head!=NULL)
  {
   ptr=graph->array[i].head;
   //ptr->dest=graph->array[i].head->dest;
   while (ptr->next!=NULL)
   {
    cout<<i<<":"<<ptr->dest<<endl;
    ptr=ptr->next;
   }
   cout<<i<<":"<<ptr->dest<<endl;
   ptr=ptr->next;
  }
 }
}
// Structure to represent a min heap node
struct MinHeapNode
{
 int  v;
 int dist;
};
// Structure to represent a min heap
struct MinHeap
{
 int size;      // Number of heap nodes present currently
 int capacity;  // Capacity of min heap
 int *pos;     // This is needed for decreaseKey()
 struct MinHeapNode **array;
};
// A utility function to create a new Min Heap Node
struct MinHeapNode* newMinHeapNode(int v, int dist)
{
 struct MinHeapNode* minHeapNode =
  (struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));
 minHeapNode->v = v;
 minHeapNode->dist = dist;
 return minHeapNode;
}
// A utility function to create a Min Heap
struct MinHeap* createMinHeap(int capacity)
{
 struct MinHeap* minHeap =
  (struct MinHeap*) malloc(sizeof(struct MinHeap));
 minHeap->pos = (int *)malloc(capacity * sizeof(int));
 minHeap->size = 0;
 minHeap->capacity = capacity;
 minHeap->array =
  (struct MinHeapNode**) malloc(capacity * sizeof(struct MinHeapNode*));
 return minHeap;
}
void delete_minHeap(MinHeap* minHeap)
{
 cout<<"size"<<minHeap->capacity<<endl;
 free(minHeap->pos);
 free(minHeap->array);
 free(minHeap);
}
// A utility function to swap two nodes of min heap. Needed for min heapify
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
 struct MinHeapNode* t = *a;
 *a = *b;
 *b = t;
}
// A standard function to heapify at given idx
// This function also updates position of nodes when they are swapped.
// Position is needed for decreaseKey()
void minHeapify(struct MinHeap* minHeap, int idx)
{
 int smallest, left, right;
 smallest = idx;
 left = 2 * idx + 1;
 right = 2 * idx + 2;
 if (left < minHeap->size &&
  minHeap->array[left]->dist < minHeap->array[smallest]->dist )
  smallest = left;
 if (right < minHeap->size &&
  minHeap->array[right]->dist < minHeap->array[smallest]->dist )
  smallest = right;
 if (smallest != idx)
 {
  // The nodes to be swapped in min heap
  MinHeapNode *smallestNode = minHeap->array[smallest];
  MinHeapNode *idxNode = minHeap->array[idx];
  // Swap positions
  minHeap->pos[smallestNode->v] = idx;
  minHeap->pos[idxNode->v] = smallest;
  // Swap nodes
  swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
  minHeapify(minHeap, smallest);
 }
}
// A utility function to check if the given minHeap is ampty or not
int isEmpty(struct MinHeap* minHeap)
{
 return minHeap->size == 0;
}
// Standard function to extract minimum node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
 if (isEmpty(minHeap))
  return NULL;
 // Store the root node
 struct MinHeapNode* root = minHeap->array[0];
 // Replace root node with last node
 struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1];
 minHeap->array[0] = lastNode;
 // Update position of last node
 minHeap->pos[root->v] = minHeap->size-1;
 minHeap->pos[lastNode->v] = 0;
 // Reduce heap size and heapify root
 --minHeap->size;
 minHeapify(minHeap, 0);

 return root;
}
// Function to decreasy dist value of a given vertex v. This function
// uses pos[] of min heap to get the current index of node in min heap
void decreaseKey(struct MinHeap* minHeap, int v, int dist)
{
 // Get the index of v in  heap array
 int i = minHeap->pos[v];
 // Get the node and update its dist value
 minHeap->array[i]->dist = dist;
 // Travel up while the complete tree is not hepified.
 // This is a O(Logn) loop
 while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist)
 {
  // Swap this node with its parent
  minHeap->pos[minHeap->array[i]->v] = (i-1)/2;
  minHeap->pos[minHeap->array[(i-1)/2]->v] = i;
  swapMinHeapNode(&minHeap->array[i],  &minHeap->array[(i - 1) / 2]);
  // move to parent index
  i = (i - 1) / 2;
 }
}
// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap *minHeap, int v)
{
 if (minHeap->pos[v] < minHeap->size)
  return true;
 return false;
}
// A utility function used to print the solution
void printArr(int dist[], int n)
{
 printf("Vertex   Distance from Source\n");
 for (int i = 0; i < n; ++i)
  printf("%d \t\t %d\n", i, dist[i]);
}
void showminheap(struct MinHeap* minHeap)
{
 int V=minHeap->size;
 for(int i=0;i<V;i++)
 {
  cout<<minHeap->pos[i]<<"this!!"<<endl;
  cout<<minHeap->array[i]->v<<"this v!!"<<endl;
 }
}
// The main function that calulates distances of shortest paths from src to all
// vertices. It is a O(ELogV) function
void dijkstra(struct Graph* graph, int src)
{
 int V = graph->V;// Get the number of vertices in graph
 int* dist=new int[V];      // dist values used to pick minimum weight edge in cut
 // minHeap represents set E
 struct MinHeap* minHeap = createMinHeap(V);
 // Initialize min heap with all vertices. dist value of all vertices
 for (int v = 0; v < V; ++v)
 {
  dist[v] = INT_MAX;
  minHeap->array[v] = newMinHeapNode(v, dist[v]);
  minHeap->pos[v] = v;
 }
 // Make dist value of src vertex as 0 so that it is extracted first

 dist[src] = 0;
 decreaseKey(minHeap, src, dist[src]);
 // Initially size of min heap is equal to V
 minHeap->size = V;

 // In the followin loop, min heap contains all nodes
 // whose shortest distance is not yet finalized.
 while (!isEmpty(minHeap))
 {
  // Extract the vertex with minimum distance value
  struct MinHeapNode* minHeapNode = extractMin(minHeap);
  int u = minHeapNode->v; // Store the extracted vertex number
  // Traverse through all adjacent vertices of u (the extracted
  // vertex) and update their distance values
  struct AdjListNode* pCrawl = graph->array[u].head;
  while (pCrawl != NULL)
  {
   int v = pCrawl->dest;
   // If shortest distance to v is not finalized yet, and distance to v
   // through u is less than its previously calculated distance
   if (isInMinHeap(minHeap, v) && dist[u] != INT_MAX &&
    pCrawl->weight + dist[u] < dist[v])
   {
    dist[v] = dist[u] + pCrawl->weight;
    // update distance value in min heap also
    decreaseKey(minHeap, v, dist[v]);
   }
   pCrawl = pCrawl->next;
  }
  free(pCrawl);
  free(minHeapNode);
  
 }

 delete_minHeap(minHeap);
 // print the calculated shortest distances
 printArr(dist, V);
 delete dist;
}

// Driver program to test above functions
int main()
{
 // create the graph given in above fugure
 int V = 9;
 struct Graph* graph = createGraph(V);
 while(true)
 {
 addEdge(graph, 0, 1, 4);
    addEdge(graph, 0, 7, 8);
    addEdge(graph, 1, 2, 8);
    addEdge(graph, 1, 7, 11);
    addEdge(graph, 2, 3, 7);
    addEdge(graph, 2, 8, 2);
    addEdge(graph, 2, 5, 4);
    addEdge(graph, 3, 4, 9);
    addEdge(graph, 3, 5, 14);
    addEdge(graph, 4, 5, 10);
    addEdge(graph, 5, 6, 2);
    addEdge(graph, 6, 7, 1);
    addEdge(graph, 6, 8, 6);
    addEdge(graph, 7, 8, 7);
 dijkstra(graph, 0);
 delete_all_Edge(graph);
 }


 return 0;
}


沒有留言:

張貼留言